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SUMMARY 

Many years ago, we one day asked why “he” is such a brilliant geotechnical engineer. 
The accepted explanation was that he had seen it all, he had encountered so many 
different challenges during his career, that he intuitively had a solution to the most 
challenging problems. He could see the complex patterns that were hidden to some 
junior engineers.  

Using machine learning in geotechnical engineering may be a key enabler to unlock 
access to comparable knowledge and experience. ML and AI provide us tools to see 
the complex patterns between multitudes of data, which are difficult or close to 
impossible to see for our naked eye. Especially when it comes to truly combining data 
across technical disciplines, ML can provide powerful tools to extract multiparameter 
correlations and to provide clarity about key parameters.  

Experts have been developing such workflows, that for example enable combining 
geophysical and geotechnical data to models that focus on key parameters such as 
geological interfaces and / or mechanical properties. Here, I provide a few examples 
to illustrate such use cases.  

1 INTRODUCTION 

In most cases where geophysical methods are applied, the geophysical properties of 
the ground are not the desired product. They only give the basis to interpret likely 
models to answer the engineering question at hand. The electrical resistivity of layer 
X means little to an engineer, geologist, or groundwater resource manager – so, how 
can we move on from this fundamental limitation? Geotechnical soundings and 
samples also provide commonly heterogeneous spot information that is challenging 
to relate to a consistent ground model. 

Uncountable numbers of consulting hours have been spent and continue to be spent 
trying to find “geology” in the geophysical signatures of our earth or to interpret 
complex geotechnical data. However, increasingly widespread and easy access to 
machine learning gives us geoscientists a game-changing new way of solving this 
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challenge. We have been seeing an increased use of such tools in all geoscience 
sectors and we may be at a turning point when it comes to the interpretation of 
geophysical & geotechnical data and models.  

When we have sufficient training data to directly relate geophysical signatures to the 
actual model parameter of interest through a few direct samples and can quantify its 
uncertainty, we may consider the geological model the result of the geophysical 
measurement. The geophysical model is only a proxy, and aids in the quality 
assurance of the geological model. Can we be confident enough to produce volumes 
of probabilistic hard vs weak rock or mineralized vs waste rock instead of iso-
volumes with high and low resistivity? Or an interface along with quantified 
uncertainty rather than a gradient of velocities? 

I present a few case studies to illustrate these points and hope to start a constructive 
discussion whether we dare to “unleash” the power of AI to geophysical models and 
geotechnical data to produce & deliver geotechnical, geological, or hydrogeological 
models with quantifiable uncertainty. 

2 CASE STUDIES 

Three cases are briefly described, more details on the case studies are given in the 
provided references. Topics / targets include 3D quick clay occurrence delineation, 
bedrock depth assessment and mechanical properties along a railway alignment.  

2.1 Quick clay 
When it comes to data driven delineation of quick clay deposits, ML can be utilized 
both to automatically interpret geotechnical sounding and to classify soil volumes as 
probably quick, based on their geophysical signature and trained by geotechnical 
classes. This workflow is elaborated in detail by Christensen et al. (2021), consisting 
of two key steps: First geotechnical soundings (rotary pressure soundings in this case) 
are classified into probably quick or not quick. This way, enough training data is 
created for the second step; Classifying each voxel of the geophysical model into 
probably quick or not quick. This probability model can finally be expressed as iso-
volumes with a certain probability threshold, e.g. all material with more than 80% 
probability to be quick clay. 

The provided example (Figure 1) stems from a railway project in Norway, crossing 
various deep paleochannels filled with marine clays and fluvial sediments. The quick 
clay occurrence under and close to the planned tracks is a critical factor for design 
work and safe construction as well as long term management of regional stability.  
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Figure 1: Quick clay deposit throughout a paleochannel filled with marine 
clay: Top - geotechnical samples, Middle - classified geotechnical 
soundings, Bottom - delineated volume of more than 80% probable quick 
clay. 
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2.2 Top of rock 
Most types of sediments have a significant contrast to most types of rock; however, 
these contrasts are never unique and vary from site to site as well as actual sediment 
thickness. While simple resistivity thresholds or gradients can be used for small scale 
projects, real-world geological heterogeneity demands more complex interpretation 
methods. 

Here I show one example along a railway corridor comparing a state-of-practice 
triangulated bedrock model based on geotechnical boreholes alone (Figure 2 top) vs 
an integrated model (Figure 2 bottom) that was built using the same boreholes to train 
an artificial neural network (Lysdahl, et al. 2022) to find the bedrock interface in a 
3D resistivity model from processed and inverted helicopter-based time-domain EM 
data. Each point of the shown surface is accompanied by a calculated uncertainty in 
meters, allowing the planners to quantify the remaining risks in terms of volumes and 
costs. 

 

Figure 2: Bedrock topography 3D surface based on boreholes (top) as well 
as integrated with a wide swath of EM data (bottom). 
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As such models are purely data-driven, once they have been trained and tuned, they 
do not rely on expert judgment and can be updated fully automatically as additional 
drillings or other ground observations become available. Model accuracy increases 
with number of boreholes, however major features can be revealed with only very 
few, strategically placed drillings (Figure 3). 

 

 

 

Figure 3: Bedrock topography map derived from geophysical model through 
ML, driven by 800 and 3 boreholes as training data for the ML. 

2.3 Mechanical properties 
While general geometries such as bedrock topography and granulometric material 
classifications (Clay / Silt / Sand) are very useful parameters in planning works, 
ultimately it is mechanical properties that govern design parameters and excavation 
costs. Extracting mechanical parameters from geophysical models is arguably the 
most challenging task, especially when dealing with electrical methods rather than 
seismic methods. In cases where resistivity and mechanical properties sufficiently 
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correlate, ML based classification can open this Pandora’s box and provide seamless 
models throughout planned groundwork corridors.  

In the provided example, Standard Penetration Testing (SPT) counts are the initial 
basis to classify material from soft (less than 5 hammer blows) to hard or rock (more 
than 50 hammer blows). These classes have then been applied to the geophysical 
model, resulting in probabilities for each class at each model voxel. Visualizing the 
respective most probable class (Figure 4) is on way to inspect such mechanical 
strength models. Applying these to excavation volume calculations provides mass 
balance estimates for the different materials (Christensen, et al. 2024). 

 

Figure 4: Cut through a sediment model along a railway corridor classified 
according to mechanical strength from soft (purple) to hard (yellow). 
Geotechnical soundings (NSPT) that were used to train the model are visible 
and color-coded accordingly. 

3 CONCLUSIONS 

The provided examples illustrate the potential of AI in geotechnical engineering, in 
particular when building geological / geotechnical models from complex cross-
discipline data sources. A particular strength is that machine learning workflows 
typically include uncertainty estimates, enabling the quantification of the reliability 
of models. Care must be taken to respect fundamental limitations and not to fall for 
“black box” AI. The trustworthiness of results stands and falls with the fundamental 
physical relations between data that gets integrated.  
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